BOLETÍN OFICIAL DEL ESTADO

Núm. 75 Jueves 28 de marzo de 2013 Sec. III. Pág. 24414

III. OTRAS DISPOSICIONES

MINISTERIO DE INDUSTRIA, ENERGÍA Y TURISMO

Resolución de 18 de enero de 2013, de la Secretaría de Estado de Energía, por la que se renueva la vigencia de la certificación de dos colectores solares, modelos HelioSelect 202 y HelioSelect 234, fabricados por Sigurd Technologie SL.

Recibida en la Secretaría de Estado de Energía la solicitud presentada por Sigurd Technologie SL con domicilio social en Carrera Mediana s/n, 42174 San Pedro Manrique (Soria), para la renovación de vigencia de la certificación de dos colectores solares, fabricados por Sigurd Technologie SL, en su instalación industrial ubicada en Soria, que se certificaron con las siguientes contraseñas:

Modelo	Contraseña	Fecha de Resolución de certificación
HelioSelect 202	NPS – 17110	28 de junio de 2010
HelioSelect 234	NPS – 17210	28 de junio de 2010

Resultando que por el interesado se ha presentado la documentación exigida por la legislación vigente que afecta a los productos cuya renovación de vigencia de certificación solicita, y que los modelos cumplen todas las especificaciones sobre exigencias técnicas de los paneles solares, actualmente establecidas por la Orden IET/401/2012, de 28 de febrero.

Esta Secretaría de Estado, de acuerdo con lo establecido en la referida disposición ha resuelto renovar la certificación de los citados productos, con las contraseñas de certificación:

Modelo	Contraseña
HelioSelect 202	NPS - 0213
HelioSelect 234	NPS - 0313

Y con fecha de caducidad el día 18 de enero de 2015.

Esta renovación de certificación se efectúa en relación con la disposición que se cita y por tanto el producto deberá cumplir cualquier otro reglamento o disposición que le sea aplicable.

El titular de esta resolución presentará dentro del período fijado para someterse al control y seguimiento de la producción, la documentación acreditativa, a fin de verificar la adecuación del producto a las condiciones iniciales, así como la declaración en la que se haga constar que, en la fabricación de dichos productos, los sistemas de control de calidad utilizados se mantienen, como mínimo, en las mismas condiciones que en el momento de la certificación.

La identificación, características técnicas, especificaciones generales y datos resumen del informe del ensayo del modelo o tipo certificado son las que se indican a continuación.

El incumplimiento de cualquiera de las condiciones fundamentales en las que se basa la concesión de esta renovación de vigencia de certificación podrá dar lugar a la suspensión cautelar automática de la misma, independientemente de su posterior anulación, en su caso, y sin perjuicio de las responsabilidades legales que de ello pudieran derivarse.

Contra esta resolución, que pone fin a la vía administrativa, cabe interponer, potestativamente, el recurso de reposición en el plazo de un mes contado desde el día

BOLETÍN OFICIAL DEL ESTADO

Núm. 75 Jueves 28 de marzo de 2013 Sec. III. Pág. 2441

siguiente al de notificación de esta resolución, ante el Secretario de Estado de Energía previo al contencioso-administrativo, conforme a lo previsto en el artículo 116.1 de la Ley 30/1992, de 26 de noviembre, de Régimen Jurídico de las Administraciones Públicas y del Procedimiento Administrativo Común.

1. Modelo con contraseña NPS-0213

Identificación:

Fabricante: Sigurd Technologie SL. Nombre comercial: HelioSelect 202.

Tipo de captador: plano. Año de producción: 2009.

Dimensiones:

Longitud: 2.020 mm. Ancho: 1.002 mm. Altura: 100 mm.

Área de apertura: 1,854 m². Área de absorbedor: 1,808 m².

Área total: 2,024 m².

Especificaciones generales:

Peso: 39 kg.

Fluido de transferencia de calor: agua-propilenglicol.

Presión de funcionamiento Máx.: 10 bar.

Resultados de ensayo:

- Rendimiento térmico:

η。	0,777	
a ₁	3,89	W/m²K
a ₂	0,0094	W/m²K²

Nota: referente al área de apertura

- Potencia extraída por unidad de captador (W):

$T_m - T_a$ en K	400 W/m ²	700 W/m²	1.000 W/m ²
10	503	935	1.367
30	344	777	1.209
50	172	605	1.037

2. Modelo con contraseña NPS-0313

Identificación:

Fabricante: Sigurd Technologie SL. Nombre comercial: HelioSelect 234.

Tipo de captador: plano. Año de producción: 2009. cve: BOE-A-2013-3371

BOLETÍN OFICIAL DEL ESTADO

Núm. 75 Jueves 28 de marzo de 2013 Sec. III. Pág. 24416

Dimensiones:

Longitud: 2.150 mm. Ancho: 1.091 mm. Altura: 100 mm.

Área de apertura: 2,143 m². Área de absorbedor: 2,136 m².

Área total: 2,346 m².

Especificaciones generales:

Peso: 45 kg.

Fluido de transferencia de calor: agua-propilenglicol.

Presión de funcionamiento Máx.: 10 bar.

Resultados de ensayo:

- Rendimiento térmico:

η,	0,795	
a ₁	4,15	W/m²K
a ₂	0,0091	W/m²K²
, and the second		

Nota: referente al área de apertura

- Potencia extraída por unidad de captador (W):

T _m – T _a en K	400 W/m²	700 W/m²	1.000 W/m²
10	591	1.102	1.614
30	398	909	1.420
50	189	700	1.212

Madrid, 18 de enero de 2013.–El Secretario de Estado de Energía, Alberto Nadal Belda.

D. L.: M-1/1958 - ISSN: 0212-033X